If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2-30k+22=0
a = 3; b = -30; c = +22;
Δ = b2-4ac
Δ = -302-4·3·22
Δ = 636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{636}=\sqrt{4*159}=\sqrt{4}*\sqrt{159}=2\sqrt{159}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{159}}{2*3}=\frac{30-2\sqrt{159}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{159}}{2*3}=\frac{30+2\sqrt{159}}{6} $
| 35x+15=35x+15 | | -5v+2(v-6)=-27 | | 12n*5=180 | | 5y+15=-5(y-1) | | 2+7(7x-4)=7-7(7x-5) | | 2(x+3)-4x=-8 | | 14u+12u=-16+9u | | x/(X/2)+7=11 | | 2x-1+3x-3=11 | | 29x=-90 | | 0.10(y-1)+0.12y=0.02-0.3 | | 3/y-3y+8=0 | | 22x+x+X+24=22 | | 2x-9+2x-9=14 | | 2(2x+4)=10x+7-4x+5 | | x+4+2x-15=20 | | 0.16(y-5)+0.12y=0.08y-0.1 | | 8x+2x+2x+8x=20 | | -n+8+4=16 | | 3p/10=8 | | 9x+11x=13 | | 10-(4.25+x)=3.90= | | 12x-55=10x-7 | | 4x10=18 | | 8y+10+17y-20=90 | | 4r+13*4=16*4r-48 | | 5=2(5x-6)+7x | | 10+1/3=22-2/3q | | 5/3-17=3n-25 | | 3x-5=-8(6+5x)x= | | 3p-5=-8(6+5p)p= | | 5=2(5x-6)+7xx= |